
Simultaneous Approximation 
of a Set of Bounded Real Functions 

By J. B. Diaz and H. W. McLaughlin 

Abstract. The problem of simultaneous Chebyshev approximation of a set F of uniformly 
bounded, real-valued functions on a compact interval I by a set P of continuous func- 
tions is equivalent to the problem of simultaneous approximation of two real-valued 
functions F+ (x), F- (x), with F- (x) _ F+ (x), for all x in I, where F- is lower semicon- 
tinuous and F+ is upper semicontinuous. 

1. Formulation of the Approximation Problem. In this introductory section, 
which consists of nine "points," the "general problem of the simultaneous approxi- 
mation of a family of functions" is formulated (see, in particular, point 4). Besides, 
a "heuristic derivation" of the basic equation (equation (T2) of point 8) is given. 

1. Let g be a (finite) real-valued function defined for all real numbers x on the 
finite-closed real number interval [a, b] = {x a _ x < b}, where a < b. The "norm," 
911gj, is defined to be 

1191 = sup Ig(x). 
a:5x_ b 

If g is not bounded in absolute value on [a, b], then 1g11 = + oo ; otherwise, 1g11 is a 
nonnegative number. 

2. Let F be a nonempty set ("family") of real-valued functions f, defined on 
[a, b]. The set of functions F is supposed to be uniformly bounded (in absolute 
value) on [a, b]; i.e., there is a nonnegative number M such that Jf(x) I _ M for any 
function f E F and any number x E [a, b]. Clearly, 

HAfIJ _ M 
for anyf ? F. (In the "general approximation problem" of point 4 below, the family 
F is "the set of functions being approximated.") 

3. Let P be a nonempty set ("class") of real-valued, continuous functions p, 
defined on [a, b]. (In the "general approximation problem," the class P is "the set 
of approximating functions"; usually, for n a nonnegative integer, the class P con- 
sists of all real polynomials of degree ? n.) 

4. For the purposes of the present paper, the "general problem of the simultaneous 
approximation of the family F by means of functions from the class P" consists in 
the determination of the number 

inf sup jjf--pJlJ 
peP f EF 

(The formulation of this "general approximation problem," as given here, was sug- 
gested by the "problem of simultaneous approximation of two bounded functions 
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g9 _ g2, with gi lower semicontinuous and 92 upper semicontinuous," of C. B. 
Dunham [1, p. 472]; this problem of Dunham will be discussed more fully under 
point 5 below.) 

5. Consider, in particular, the very special case in which the family F consists 
of a single function f, which is bounded in absolute value on [a, b]. In this case, the 
"general problem of the (simultaneous) approximation of the bounded function f by 
means of functions from the class P" consists in the determination of the number 

inf J1f-plfj 
PEP 

(Suppose, for the moment, that the function f were allowed to be unbounded in 
absolute value, that is to say, f flI = + oc. Then, for every continuous approximating 
function p one would have that 1f -pll = + oc, and hence infpcep Jf - pJl = + 00 

also. Therefore, the restriction that the function f being approximated be bounded 
in absolute value is a natural requirement to make.) 

Dunham [1, specially p. 476] showed that this "approximation problem of a 
single bounded function f" is equivalent to the "simultaneous approximation 
problem of a certain pair of bounded functions f- ? f+, where f- is lower semicon- 
tinuous, and f+ is upper semicontinuous, on [a, b]" (the set of approximating func- 
tions P used in [1] is "unisolvent of degree n on [a, b]," and includes, as an important 
special case, the case when P is the class of real polynomials of degree ? n). Specif- 
ically, this "equivalence" result of [1] can be formulated as follows: Let the func- 
tion f+ be defined by 

f+(x) = inf sup f(y)X 
5>o O< 1X-v 1<5 

for a _ x ? b (the function f+, which is known to be upper semicontinuous, is 
sometimes called the "upper envelope" of the function f on [a, b]). Similarly, let 
the function f- be defined by 

f(x) = sup inf f(y), 
5>o O_ Ix_Y 1<5 

for a ? x ? b (the function f-, which is known to be lower-semicontinuous, is 
sometimes called the "lower envelope" of the function f on [a, b]; and, clearly, 

= - (-f)+). Then the following equality holds: 

inf flf - = inf sup {I1f+ - p11, Ilf - pl}I 
PEP pEEP 

where, of course, one can replace "sup" by "max" on the right-hand side. It is to be 
noticed that, if the function f being approximated is required, in addition, to be 
continuous on [a, b] (as in the classical Chebyshev approximation problem), then 
both f+ and f- coincide with f, and the two sides of the last equation are identical. 

6. As was described in point 5, Dunham [1] was led to introduce the notion of 
simultaneous approximation in the particular case in which the family F consists 
of a pair of functions, fi and f2, with fi _ f2, where fi is lower-semicontinuous while 
f2 is upper-semicontinuous. Further, Dunham, see [1, p. 477], also considered briefly 
the particular case when the family F consists of a finite number of continuous func- 
tions, in which case it is stated that the problem of the simultaneous approximation 
of a finite number of continuous functions is equivalent to the problem of the 
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simultaneous approximation of two continuous functions, namely, the minimum and 
the maximum of the finite set of continuous functions. It is natural to ask what, if 
anything, can be said when F is an infinite set, say, countably infinite, to start out 
with. In [1], no mention is made of the simultaneous approximation problem when 
the set of functions F is not finite. 

7. It is the purpose of the present paper to show that a formula, analogous to 
that of point 5, holds for any nonempty family F; this formula means, in words, 
that "the general problem of the simultaneous approximation of the family F by 
means of functions from the class P" is equivalent to the problem of the simulta- 
neous approximation of a certain pair of functions F- and F+, with F- < F+, where 
F- is lower semicontinuous, and F+ is upper semicontinuous, on [a, b] (that is, the 
simultaneous approximation problem for "any" family F can be, at least theoret- 
ically, "reduced" to a simpler "Dunham type" approximation problem for a family 
consisting of only "two" functions F- and F+). Analytically, this result can be 
formulated as follows: Let the function F+ be defined by 

F+(x) = inf sup sup f(y), 
5>0 O Ix-y 1<5 fEF 

for a < x ? b; and let the function F- be defined by 

F-(x) = sup inf inf f(y), 
5>0 O0Ix-yl<b feF 

for a ? x ? b. Then the following equality holds: 

inf sup llf - P|| = inf sup {JJF+ -pl, IIF- - pll}, 
peP feF EP 

where, of course, one can replace "sup" by "max" on the right-hand side. Clearly, 
one has that F- < F+ from the definition of the functions involved. Also, the 
functions SUpfeF F and inffeF f are bounded in absolute value on [a, b] (recall the 
constant M of point 2). Moreover, since 

F+ =sup f)+ 

(that is to say, see point 5 above, the function F+ is the "upper envelope" of the 
function SUpfeF f), it follows that F+ is an upper semicontinuous function on [a, b]. 
Similarly, since 

F= (inf f) 
fEF 

it follows that F- is a lower semicontinuous function on [a, b]. 
8. A heuristic "derivation" of the basic equation to be proved will now be given, 

in order to clarify the logical structure of the formal proof, which is given in detail 
in Section 2. 

The equation to be proved (see point 7 above), written without "superfluous 
letters," is just 

(T2) inf sup If - p|| = inf sup sup ) - i(nf f)-P} pT2) P f EF PEP GEFf E 
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Viewing equation (T2) purely formally, as an equality between two products, and 
then applying the "cancellation law" (by simply "cancelling infcep on both sides 
of the equation"), leads one to suspect that it may be true that, for any p ? P, 

(C) sup |f -PJJ= sup {( supj) -p, inf Jf) - 
feF EF / EF/ ) 

(After one has recovered from the initial shock of this "deduction" of (C) from 
(T2), it is readily realized that all that is being said is that, if (C) holds for any p in 
P, then, upon taking the inf over P, equation (T2) will follow.) 

Returning to (C), since it presumably holds for any continuous function p 
(because P is just any set of continuous functions on [a, b]), it perhaps is valid when 
p is just the identically zero function, which is a very special continuous function on 
[a, b]. That is, one is led to consider the equality 

(T1) sup II = sup {(up f) in f) } 

and to conjecture that (T1) implies (C). 
However, instead of (T1), it is rather easy to show directly that 

(L1) sup ||fllsup f sup{sup f, inf f}; 

and hence, upon comparing the right-hand sides of equations (Li) and (T1), it is 
clear that the "missing link," in order to complete the chain of reasoning in a proof, 
"by retracing the steps," of the desired equation (T2), is simply 

(L2) sup Supf i inff) s fe f |} = sup k\FJsup \f i) 

The structure of the formal proof of (T2), given in Section 2, obtained by retrac- 
ing the preceding heuristic steps, is then clear, and can be expressed as follows: 
(Li) is the conclusion of Lemma 1; (L2) is the conclusion of Lemma 2; (Ti) is the 
conclusion of Theorem 1; (C) is the conclusion of the Corollary; and, finally, (T2) 
is the conclusion of Theorem 2. 

9. It is evident that, in this paper, the finite interval [a, b] may be replaced 
throughout by a closed and bounded (i.e., compact) subset of the real numbers; and, 
in fact, even by a nonempty compact metric space, with only minor changes in the 
text. 

2. Equivalence of the General Approximation Problem to a Simpler Approxi- 
mation Problem. This section contains the formal proof of the basic equation 
(T2), as outlined in point 8 of Section 1. 

LEMMA 1. 

supI ffI =sup supf f, inf4 

Proof. To save writing, denote 

(1 ) UF = SUP f, lF = inf ; 
fEF fEF 
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then the equality to be proved is 

sup 1fff = max {IIUFII, IIlFII} 
feF 

It will be shown first that 

(2) sup IIf II ? max {I IUFII, 11FII} I 

This inequality follows from the fact that, for all f - F, 

lF(X) ? f(X) ? UF(X), a < x < b. 

Therefore 

If(x) I max {IUF(X)I, IlF(X)I} 

? max {IIUFII, 11FII} I 
which yields 

l1ff11 < max {IIUFIf, If lFIfI} 
and hence (2) follows. 

It remains to show that 

(3) sup lff ? > max {JfUFff, 111FIf} f F 

and, in the first part of this argument, it will be proved that 

(4) SUEP fIff J- IIUFII 
feF 

Let {Xkjk'l be a sequence of numbers, with a < Xk ? b for k = 1, 2, ***, such that 

1mm JUF(Xk)| = |IUFII 

In the sequence of numbers {UF(Xk) }', there are either infinitely many numbers 
> 0 or else infinitely many < 0; in the first case, it follows that there is an infinite 
subsequence { UF(Xnk) I k=1, such that 

lim UF(Xnk) = IfUFII 
k-+oo 

while, in the second case, there is a subsequence {UF(Xnk) }Ik', such that 

-lim UF(Xnk) = |IUFII 
k--oo 

In either case, letting {Xk }j denote the chosen subsequence, if necessary, one has 
that 

liM JUF(Xk)J = lim UF(Xk) = J|UFI. 
k--oo k-o 

Now, let {fk I O 
be a sequence of functions from F such that 

UF (Xk) - 1/k < fk (Xk) < UF (Xk) , 

for k = 1, 2, * (the existence of such a sequence of functions follows from the 
definition of UF). Then, one has 
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lim fk(Xk) = lim UF(Xk), 
k--*oo k--oo 

and 

liM fk(Xk) = rli UF(Xk) = ||UF|m 
k--oo k-o 

Hence, since 

syuI |fII > rliM fk(xk) 
f F k--oo 

it follows that (4) holds. 
Next, it will be proved that 

(5) SUeP l fll 
> 

111FIf 

Letting { k }I be a sequence of numbers, with a < Tk < b, for k = 1, 2, ** , such 
that 

lim 1lF(Xk)l = liin lF(Xk) = 1IIFIJ 
k-~oo k--oo 

and {7k})11 be a sequence from F such that 

lF (Xk) ? fk(Xk) ? lF(Xk) + 1/k, 

for k = 1, 2, *, one obtains (5). Alternatively, one may use, instead of the 
reasoning just given, the identity 

IF = inf f = -sup (-f), 
feGF feGF 

plus the already proved inequality (4), in order to get (5). 
Inequalities (4) and (5) give the desired equality, and the proof of Lemma 1 is 

complete. 
LEMMA 2. If 1 and u are bounded, real-valued functions defined on [a, b], with 

1 <u , then 

max { lull, 111111 = max { llu+ll, IlFIII} . 

Proof. It will be shown first that 

(6) max {I lull, 11111} < max { llu+ll, flffI- 
This inequality follows from the fact that if g is any real-valued function on [a, b] 
such that 

l-(x) <g(x) U+(X) , a < x < b, 

then 

qg(x)f < max {fu+(x), fl-(x) } 
< max {fuf+ll, flFII}I 

and, consequently 
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ffgff _ max {I lufll, 111111 

Since 

(x) < (x) u+(x), a < x < b 
and 

l-(x) < U x) < U+ W) a < x _ b, 

it follows that (taking g = 1 and g = u in succession), 

11111 _ max {I lu+JJ, 111-11fl 

and 

full < max {I lu+JJ, 111-11ff 

completing the proof of (6). 
It remains to show that 

(7) max {I lull, 11111} I max { llulJ, Ill-II I 
This follows from the fact that, for any bounded real-valued function g on [a, b], it 
always happens that 

(8) 1l1l ? ffq+If 

and 

(9) jail ? flg-qf 
(The definitions of g+ and 9- are given under point 5 of Section 1.) Since - (-g)+ = 

9-, and IJ - qJJ = 19 II1, the second inequality will follow, once the first is established. 
To prove the first inequality, one needs the following formula: 

(*) I III= sup Ig(x) = max{ sup g(x),- inf g(x) 
a<x~<bb a<xb 

which may be established thus: 
For x ? [a, b], 

Ig(x)l = max {g(x), -g(x)} 
therefore 

I a(x) I < max { sup g (y), - inf g (y) 
a~y~b a<y~b 

and hence 

(10) flajl = sup Ig(x)l < max 4 sup g(y), - inf g(y) 
a xb <bb ayb 

On the other hand, for x E [a, b], 

ia(x)I ' g(x) 
therefore 
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sup I9g(Y) ? g(X), 

and hence 

(11) sup Ig(Y)JI sup g(x) 
a~yb a~xb 

Similarly, 

19WxI >- -g(X); 

therefore 

sup 1g(Y) I -g(X), 
a yb 

and hence 

(12) sup g (y) I - inf g (x). 
a~yb a<xzb 

Putting (11) and (12) together, one obtains 

(13) 1q1 I = sup Ig(x)I > max 4sup g(y), - inf g(y) 
a~xb a<vyb a<y<b 

and putting (10) and (13) together gives the formula (*). 
Now to return to the proof of the inequality 

(8) 1NO1 >- 1ffgl 

Since, in view of formula (*), 

Ifq+Jf = sup Igq(x)I = max4 sup g' (x), - inf g+ W 
a~xb a~xb a<x xb 

the desired inequality will follow once it is proved that 

(14) sup g(x) _ sup g+ ( 
a~xb a <xzb 

and 

(15) inf g(x) < inf g+(x) 
a<x<b azx<b 

The proof of (14) is as follows: Since g+ is upper semicontinuous, there exists 
?- [a, b] such that 

sup g+ (x) = g+ (x) 

Now, by the definition of 9+, there exists a sequence {Xk } 
' 

with a-< Xk ? b for 
k = 1, 2, ***,such that 

lim Xk = 

k--+oo 

and also such that, for each positive integer k, one has 

9(Xk) 9+ (X) - 1/k, 
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from which (14) follows readily (actually, the equality sign holds in (14), since 
g(x) < g+(x) for x ? [a, b], and hence supa~zxb g(x) < supa<x<b g+(x)). 

The proof of (15) is as follows: By the definition of g+ one has 

g(x) < g+(x), a < x < b, 
and consequently (15) follows (that the equality sign does not always hold in (15) 
may be seen by choosing g(x) to be unity for a ? x < b, and zero for x = b; the 
"theoretical reason" for this apparent discrepancy between (14) and (15) seems to 
be that, in the proof of (14), the fact that g+ attains the supremum of g on [a, b] is 
used, together with the inequality g ? g+, while in the proof of (15), only the in- 
equality g < g+ can be used, since g+ need not attain the infimum of g on [a, b]). 

It is clear that, putting g = u in inequality (8), and g = 1 in inequality (9), one 
obtains (7). Inequalities (6) and (7) give the desired equality, and the proof of 
Lemma 2 is complete. 

THEOREM 1. 

sup upff sp supf) 1 1 inf f)1 feF -sp GfF / fF 1 

Proof. From Lemma 1 one has that 

sup Ilf =max 4 sup f, inf fK 
feF fGF fGF 2 

hence the desired conclusion follows from Lemma 2, upon choosing 

u =sup f, l=inff . 
f eF f eF 

COROLLARY. Let p be a real-valued, continuous function on [a, b]. Then 

sup lf- P1l=SUP{(supf)-P ( inf f) -P} 

Proof. As an auxiliary proposition, it will first be shown that, for any bounded 
real-valued function h on [a, b], one has 

(16) [h-p]+ =h+ -p, 
and 

(17) [h-p]- =h--p. 

(Since, for any bounded real-valued function f on [a, b], one has 

-(-f)+= f-7 
equation (17) is implied by equation (16), as is evidenced by the following simple 
computation: 

(h -p)- = [(h -p)]+ = (-h + p)+ = [(-h)+ + p] 
- (-h)+-P 
=h- - p) 

Now to prove (16). It will first be shown that 
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(18) [h - p+_ h+-p. 
To see this, let x ? [a, b], and {Xk'} , be a sequence of numbers from [a, b] such that 

kixk x 
llfXk X= 
k-*o~o 

and 

lim [h(Xk) - p(Xk)] = [h - p] (x). 
k--*oo 

Then, since p is continuous at x, one has 

[h - p] (x) = lim [h(Xk) p (Xk)] 
k-+o~o 

= lim h(xk) - lim p(Xk) 
k-+o~o k-+o~o 

= lim h(Xk) - p (X) 
k-+o~o 

< Elim sup h(y)] -p(x) 
S >0 o<'x-y1<b; a<y<b 

=h+(x) -p(x) 

which gives (18). 
It remains to show that 

(19) [h -p]+_> h+ -p. 
To see this, let x ? [a, b], and {Xk' I be a sequence of numbers from [a, b] such that 

lim Xk =x 
k- oyo 

and 

lim h(Xk) = h+ (x). 
k- *oy 

Then, since p is continuous at x, 

h (x) - p(x) = lim h(Xk) - lim p(Xk) 
k- oo k - 

= lim [h(Xk) - p (Xk)] 
k-+oo 

? lim sup [h (y) -p (y)] 
5>0 O<Ix-yI<b; a<vyb 

=[h -p]+(x), 
which gives (19). 

Putting together inequalities (18) and (19) gives equation (16). 
For convenience in writing, let G = { gIg = f - p, where f C F }. The result of 

the corollary then follows from the previous theorem, applied to the family G, 
since, on the one hand 

sup 111a = sup 11f - P11 
w ufG f, F 

while, from (16), with h = SUPf EF f, 
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UP ) = 
- supf) -p; 

E(S G 9 fE F EF / 

and, from (17) 

( 9) [ f j) =P (fn i) -P / LfEF G-\E F/ 

Now, let P be a nonempty set of real-valued continuous functions on [a, b]. Taking 
the infimum over P, on both sides of the equality in the conclusion of the corollary, 
gives the following approximation theorem: 

THEOREM 2. 

inf sup Iff- p nf sup sup S f) -P inf f pECP f ECF pE=p Cz \F CF 

Remark. In words, this theorem states that the problem of simultaneous approxi- 
mation of the family F, in the supremum norm, by functions of the class P, is 
equivalent to the simpler problem of approximating, simultaneously, two functions, 
a certain upper semicontinuous function and a certain lower semicontinuous 
function. 
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